
Reliable In-Memory
Code Identification
Using Relocatable

Pointers
Irfan Ahmed, Vassil Roussev, Aisha Ali Gombe

Department of Computer Science
University of New Orleans

1

Contents

�  Code fingerprinting

�  Problem Statement

�  Codeid – proposed approach
�  Challenges – ASLR, paging, and page alignment

�  Evaluation
�  Prevalence
�  Coverage
�  Collision
�  Accuracy

�  Conclusion

2

Why Code Fingerprinting?

�  Used by several proactive security monitoring, and
reactive forensic analysis applications
�  Most incident response and deep forensics techniques

requires exact code version being executed on target
system

�  Fingerprinting of Malware is at the core of antivirus
applications

�  In Infrastructure-as-a-service (IaaS), code fingerprinting
is a critical tool that enables a large number of
automated services
�  Patch management
�  Security services such as code integrity checking

3

Code Identification
�  Network fingerprinting tools

�  such as nmap and xprobe2
�  Remotely identify kernel versions based on the packets being

exchanged
�  inherently unreliable

�  Disk filesystem
�  such as virt-inspector using libguestfs
�  Limited access to non-volatile media such as encrypted disk

in the cloud

�  Hardware
�  CPU register states containing pointers to low-level data

structures such as IDT and GDT to identify kernel versions
�  Does not work on many MS Windows kernels [1]

4 [1] Y. Gu, et al., Os-sommelier: Memory-only operating system fingerprinting in the cloud, Third ACM
 Symposium on Cloud Computing, SoCC '12, pages 5:1-5:13, New York, NY, USA, 2012. ACM.

Code Identification

�  Physical memory
Ø  Use cryptographic hash of interrupt handler code as unique

a unique feature to identify kernel versions
Ø  Data structure definitions vary across OS version, which are

used for kernel version identification
Ø  OS-Sommelier

�  Search entire memory dump and identifies the page global
table

�  Find kernel page in virtual address space in memory
�  Generate the signature of the kernel, which is

cryptographic hash values of kernel pages
�  Same step is performed on target image to identify the

kernel version

5

Problem Statement

�  Given a physical memory dump, how we can
identify the presence of a known piece of code in
the dump, which is running at an arbitrary location

�  Goals:
�  Accurate – precise results even for closely related

code
�  Robust – least dependence on in-memory data

structures
�  Performance – fast enough to be of practical use of

scanning live VMs
�  Fully Automated – requires no human in the loop

6

A simple approach

�  Divide the executable file into memory size pages

�  Compute hash of each page

�  Compute the hash of in-memory pages

�  and, compare them with the hash values of
executable file pages

�  Works on Position Independent Code that does not
change when loaded into the memory

Does not work on relocatable code
7

Relocatable code
00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 24 CC F8 e8 39 00 00 00 83 ..U..h.$...9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 24 CC F8 68 ..U...E..@4.$..h
00000040| 00 25 CC F8 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 .%..........3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 25 CC F8 cc cc %.%....
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 04 01 00 e8 39 00 00 00 83 ..U..h.....9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 04 01 00 68 ..U...E..@4....h
00000040| 00 05 01 00 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 05 01 00 cc cc %......
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

Code in Memory

Code in File Pre-determined Base Address: 0x00010000

In-Memory Base Address: 0xF8CC2000

8

Focus of the work

�  How to efficiently identify relocatable code

�  Consider only 32-bit Windows executables for
experiments

9

Proposed Approach –
codeid

page	
 signature	
 	
 	
 ß	
 	
 	
 offsets	
 in	
 relocation	
 table	
 	
 	
 &	
 	
 	
 pointers	
 	

Observation	
 (from	
 our	
 study):	

Location	
 and	
 pointer	
 values	
 naturally	
 provide	
 unique	

signatures	
 for	
 the	
 pages	
 of	
 an	
 executable	
 >iles	

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 04 01 00 e8 39 00 00 00 83 ..U..h.....9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 04 01 00 68 ..U...E..@4....h
00000040| 00 05 01 00 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 05 01 00 cc cc %......
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

Code in File

0x16
0x3B
0x40
0x5A

Relocation
Table

Pre-determined Base Address: 0x00010000

1
2
3
4

Index N

Pointer Location

10

Proposed Approach –
codeid

0x4534

0x5948

 . . .

0x6543

Extract
relocation

table

Extract
pointer
values

Divide
file into
memory

pages

Page-wise
grouping of
offset and
pointers

Adjust
offsets with
beginning

of page

Executable File

R
el

o
ca

ti
o
n
 T

ab
le

Signatures

Page #
0x1

0x2

. . .

N

Extraction Signature Generation

Offset
0x432

0x444

. . .

0x566

Pointers
0xFFF42323

0xFFF32222

. . .

0xFFFF2222

Offset
0x534

0x598

. . .

0x678

Pointers
0xFFF45334

0xFFF34455

. . .

0xFFFF3233

. . .

11

ASLR & pointer values
00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 24 CC F8 e8 39 00 00 00 83 ..U..h.$...9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 24 CC F8 68 ..U...E..@4.$..h
00000040| 00 25 CC F8 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 .%..........3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 25 CC F8 cc cc %.%....
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 04 01 00 e8 39 00 00 00 83 ..U..h.....9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 04 01 00 68 ..U...E..@4....h
00000040| 00 05 01 00 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 05 01 00 cc cc %......
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

Code in Memory

Code in File

0x16
0x3B
0x40
0x5A

Relocation
Table

0x16
0x3B
0x40
0x5A

Relocation
Table

Pre-determined Base Address: 0x00010000

In-Memory Base Address: 0xF8CC2000

0xF8CC24E0 ̶ 0xF8CC2000 = 4E0

0xF8CC2490 ̶ 0xF8CC2000 = 490
0xF8CC2500 ̶ 0xF8CC2000 = 500

0xF8CC2584 ̶ 0xF8CC2000 = 584

0x000104E0 ̶ 0x00010000 = 4E0

0x00010490 ̶ 0x00010000 = 490

0x00010500 ̶ 0x00010000 = 500

0x00010584 ̶ 0x00010000 = 584

Pointer – Base Address = Offset

Pointer – Base Address = Offset

1
2
3
4

1
2
3
4

Index N

Pointer Location

12

on-disk vs in-memory
pointer values

Base	
 in-­‐memory	
 address	
 (Bm)	
 computation:	

13

Paging Considerations

�  Not all pages of an executable (kernels/
applications/libraries) are present in main memory
�  About 75% of MS Windows kernels are pageable

�  Application executables are completely pageable

�  majority-wins approach is used, which in practice
eliminates much of the paging-related noise

�  Use all pages of executable that are read-only and
not discardable

14

Correct page alignment

�  Alignment between in-file and in-memory pages for
the executable

�  Enough information is present in the headers of an
executable for correct alignment

15

Test dataset

�  Everything hinges on the signatures from relocation
tables being unique

�  Test sets
1.  Kernels
2.  System executables (system32)

3.  Applications
4.  Malware

16

Analysis of the Data

�  Prevalence: how many relocations per page can we
expect to find?

�  Coverage: what fraction of the pages in the executable
contain relocations?

�  Collision: What are the collision rates of signatures
across different executables

�  Accuracy:
�  Page Level: What are the false positive (FP) and false

negative (FN) rates for page signatures?
�  File Level: Can we just use relocatable code to identify

code version?

17

prevalence & coverage:
kernels

18

prevalence & coverage:
system

19

prevalence & coverage:
applications

prevalence & coverage:
malware

21

(page) signature overlap:
kernels

22

�  20 kernel files
�  11,472 signatures and
�  641,636 Offset-Relocation (O-R) pairs

�  All signatures are unique
�  No two pages completely overlap

(page) signature overlap:
system

23

�  17,000 system files
�  667,299 signatures
�  67,031,628 O-R pairs
�  Similar results from Kernels

�  Decreasing overlap from older to newer versions
�  No definite answer
�  One possibility is that newer compiler optimization leads to less

stable O-R configurations in response to minor code changes

(page) signature overlap:
applications

24

�  8 popular applications – 26 total versions
�  5 out of 8 contain only non-overlapping signatures
�  Adobe Reader, cmd, Firefox, Media Player, and WinRAR
�  Five Firefox versions cover a release period of only eight

months (Aug 2013 – April 2014)

�  The overlap of the remaining three applications
stays almost completely in lowest quantile

(page) signature overlap:
malware

25

�  9 malware types
�  34,014 malware samples
�  976,754 page signatures
�  124,239,916 pairs
�  Almost all signatures are distinct

�  Exceptions: Backdoor, and Trojan

(page) signature overlap:
malware

�  Backdoor set contains 964 closely related version
of Backdoor.Win32.Hupigon
�  sdhash similarity score is 95 out of 100

�  Trojan set contains 718 near-identical versions of
Trojan-Downloader.Win32.Banload
�  Contributing 4.4% of the samples in collision

26

Page- and File-level accuracy

�  Coverage, Provenance, and Overlap are measured on the
signatures created from executable files

�  Accuracy is measured on memory dumps

�  Measuring ground truth
�  LibVMI – an alternate way to find pages in memory dump
�  Unlike codeid, libVMI finds and interprets the data

structures such as LDR_DATA_TABLE_ENTRY,
PEB_LDR_DATA, EPROCESS, and PEB.

�  It identifies the virtual base address and size of kernel and
other executables including DLLs, EXEs, and SYS.

�  Pages identified by LibVMI are the target for codeid

27

Page- and File-level accuracy

�  In some cases, page contains only 0x00 or 0xFF.
�  It satisfies the equation for signature matching

�  Trivially filter out with precisely zero entropy
�  Filtering improves false positives

�  Pages with very low (but not zero) entropy triggers
false positives

�  Overall codeid has zero false negative rate, and
false positive rate of around 0.0021
�  Page-level accuracy is 99.79%

28

page-level accuracy:
kernel & modules

29

TP: Identify correct page, belong to correct process
FP: Wrong page or page belongs to wrong process
TN: No match and memory image does not contain target binary
FN: No match and memory image contains target binary

page-level accuracy:
processes and .dlls

30

TP: Identify correct page, belong to correct process
FP: Wrong page or page belongs to wrong process
TN: No match and memory image does not contain target binary
FN: No match and memory image contains target binary

File-level accuracy:
kernel modules

31

�  182 different modules (by names)
�  across 10 MS Windows versions

�  Blank cells indicate zero in confusion matrix

�  GT represents ground-truth
�  Total number of binaries present in memory image

File-level accuracy:
kernel modules

�  Paging affects the accuracy
�  2.2% (or 737 out of 33,539) of pages are not loaded

in 10 images

�  Vista-SP1 image alone had 434 pages (out of 3,342)
missing
�  13% of pages are missing

�  It is probably the result of the snapshot taken too soon
after boot

�  VMware drivers are found in all cases

32

File-level accuracy:
Firefox 23 − 29

33

�  Applications tend to have no page signature collisions

�  Challenging case: 7 consecutive versions of Firefox,
individual release comes every 6 weeks
�  Coverage of around 3.5%
�  All pages are correctly identified
�  Only two neighboring versions are tied

Signature Comparison—
Baseline algorithm

34

Basis of content-filtered
algorithm

35

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 24 CC F8 e8 39 00 00 00 83 ..U..h.$...9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 24 CC F8 68 ..U...E..@4.$..h
00000040| 00 25 CC F8 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 .%..........3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 25 CC F8 cc cc %.%....
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

00000000| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000010| 8b ff 55 8b ec 68 E0 04 01 00 e8 39 00 00 00 83 ..U..h.....9....
00000020| c4 04 5d c2 04 00 cc cc cc cc cc cc cc cc cc cc ..].............
00000030| 8b ff 55 8b ec 8b 45 08 c7 40 34 90 04 01 00 68 ..U...E..@4....h
00000040| 00 05 01 00 e8 0f 00 00 00 83 c4 04 33 c0 5d c2 3.].
00000050| 08 00 cc cc cc cc cc cc ff 25 84 05 01 00 cc cc %......
00000060| 44 72 69 76 65 72 20 75 6e 6c 6f 61 64 69 6e 67 Driver unloading
00000070| 0a 00 cc cc cc cc cc cc cc cc cc cc cc cc cc cc
00000080| 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 Hello, World..

Code in Memory

Code in File

0x16
0x3B
0x40
0x5A

Relocation
Table

0x16
0x3B
0x40
0x5A

Relocation
Table

Pre-determined Base Address: 0x00010000

In-Memory Base Address: 0xF8CC2000

0xF8CC24E0 ̶ 0xF8CC2000 = 4E0

0xF8CC2490 ̶ 0xF8CC2000 = 490
0xF8CC2500 ̶ 0xF8CC2000 = 500

0xF8CC2584 ̶ 0xF8CC2000 = 584

0x000104E0 ̶ 0x00010000 = 4E0

0x00010490 ̶ 0x00010000 = 490

0x00010500 ̶ 0x00010000 = 500

0x00010584 ̶ 0x00010000 = 584

Pointer – Base Address = Offset

Pointer – Base Address = Offset

1
2
3
4

1
2
3
4

Index N

Pointer Location

Last 12 bits of a pointer are consistent across file and memory

Signature Comparison—
Content-filtered algorithm

36

Throughput

37

�  PoC implementation ran on 2.6GHz Intel Core i7 CPU using a 2GB target
�  33,554,432 memory pages to scan

�  Cross-over point of algorithms is around 1000 signatures

�  Further improvement: filtering out of memory pages based on content or
location, sampling of signatures, and concurrent processing

Comparison with prior work

38

�  OS-Sommelier— best representation of prior state of the art
�  Better accuracy than the approaches based on CPU registers and IDT

content

�  It is inherently fragile and has high sensitivity to the hypervisor
�  Dependence on specific byte patterns to identify data structures

Conclusion
�  Fully automated signature generation

�  Page-level accuracy of 99.79%

�  Zero false negative rate

�  ensures that, if the target code is in memory, it will be found

�  Perfect kernel detection (windows)

�  Kernel module mapping: 97/93/100/100% for xp/vista/7 &
8

�  Firefox detection – success in the worst case

�  Scalable performance

�  Main limiting factor in codeid is the unpredictability of paging
system

�  not a notable impediment under normal workload

39

40

