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Why Code Fingerprinting? 

�  Used by several proactive security monitoring, and 
reactive forensic analysis applications 
�  Most incident response and deep forensics techniques 

requires exact code version being executed on target 
system 

�  Fingerprinting of  Malware is at the core of  antivirus 
applications 

�  In Infrastructure-as-a-service (IaaS), code fingerprinting 
is a critical tool that enables a large number of  
automated services 
�  Patch management 
�  Security services such as code integrity checking 
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Code Identification 
�  Network fingerprinting tools  

�  such as nmap and xprobe2 
�  Remotely identify kernel versions based on the packets being 

exchanged 
�   inherently unreliable 

�  Disk filesystem 
�  such as virt-inspector using libguestfs 
�  Limited access to non-volatile media such as encrypted disk 

in the cloud 

�  Hardware 
�  CPU register states containing pointers to low-level data 

structures such as IDT and GDT to identify kernel versions 
�  Does not work on many MS Windows kernels [1] 

4 [1] Y. Gu, et al., Os-sommelier: Memory-only operating system fingerprinting in the cloud, Third ACM      
      Symposium on Cloud Computing, SoCC '12, pages 5:1-5:13, New York, NY, USA, 2012. ACM. 



Code Identification 

�  Physical memory 
Ø  Use cryptographic hash of  interrupt handler code as unique 

a unique feature to identify kernel versions 
Ø  Data structure definitions vary across OS version, which are 

used for kernel version identification 
Ø  OS-Sommelier 

�  Search entire memory dump and identifies the page global 
table 

�  Find kernel page in virtual address space in memory 
�  Generate the signature of  the kernel, which is 

cryptographic hash values of  kernel pages 
�  Same step is performed on target image to identify the 

kernel version 
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Problem Statement 

�  Given a physical memory dump, how we can 
identify the presence of  a known piece of  code in 
the dump, which is running at an arbitrary location 

�  Goals: 
�  Accurate – precise results even for closely related 

code 
�  Robust – least dependence on in-memory data 

structures  
�  Performance – fast enough to be of  practical use of  

scanning live VMs 
�  Fully Automated – requires no human in the loop 
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A simple approach 

�  Divide the executable file into memory size pages 

�  Compute hash of  each page 

�  Compute the hash of  in-memory pages  

�  and, compare them with the hash values of  
executable file pages 

�  Works on Position Independent Code that does not 
change when loaded into the memory 

Does not work on relocatable code 
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Relocatable code 
00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0 24  CC F8 e8 39 00 00 00 83   ..U..h.$...9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 24 CC F8 68   ..U...E..@4.$..h
00000040|  00 25 CC F8 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   .%..........3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 25 CC F8 cc cc   .........%.%....
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0  04   01 00 e8 39 00 00 00 83   ..U..h.....9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 04  01 00 68   ..U...E..@4....h
00000040|  00 05  01 00 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   ............3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 05 01 00 cc cc   .........%......
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

Code in Memory

Code in File Pre-determined Base Address: 0x00010000

In-Memory Base Address: 0xF8CC2000

8 



Focus of  the work 

�  How to efficiently identify relocatable code 

�  Consider only 32-bit Windows executables for 
experiments 
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Proposed Approach – 
codeid 

page	
  signature	
  	
  	
  ß	
  	
  	
  offsets	
  in	
  relocation	
  table	
  	
  	
  &	
  	
  	
  pointers	
  	
  

Observation	
  (from	
  our	
  study):	
  
Location	
  and	
  pointer	
  values	
  naturally	
  provide	
  unique	
  
signatures	
  for	
  the	
  pages	
  of	
  an	
  executable	
  >iles	
  

00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0  04   01 00 e8 39 00 00 00 83   ..U..h.....9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 04  01 00 68   ..U...E..@4....h
00000040|  00 05  01 00 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   ............3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 05 01 00 cc cc   .........%......
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

Code in File

0x16
0x3B
0x40
0x5A

Relocation 
Table

Pre-determined Base Address: 0x00010000

1
2
3
4

Index N

Pointer Location
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Proposed Approach – 
codeid 
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Page #
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Extraction Signature Generation
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0x432

0x444

. . .

0x566

Pointers
0xFFF42323

0xFFF32222

. . .

0xFFFF2222

Offset
0x534

0x598

. . .

0x678

Pointers
0xFFF45334

0xFFF34455

. . .

0xFFFF3233

.  .  .
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ASLR & pointer values 
00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0 24  CC F8 e8 39 00 00 00 83   ..U..h.$...9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 24 CC F8 68   ..U...E..@4.$..h
00000040|  00 25 CC F8 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   .%..........3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 25 CC F8 cc cc   .........%.%....
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0  04   01 00 e8 39 00 00 00 83   ..U..h.....9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 04  01 00 68   ..U...E..@4....h
00000040|  00 05  01 00 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   ............3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 05 01 00 cc cc   .........%......
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

Code in Memory

Code in File

0x16
0x3B
0x40
0x5A

Relocation
Table

0x16
0x3B
0x40
0x5A

Relocation 
Table

Pre-determined Base Address: 0x00010000

In-Memory Base Address: 0xF8CC2000

0xF8CC24E0  ̶  0xF8CC2000 = 4E0

0xF8CC2490  ̶  0xF8CC2000 = 490
0xF8CC2500  ̶  0xF8CC2000 = 500

0xF8CC2584  ̶  0xF8CC2000 = 584

0x000104E0  ̶  0x00010000 = 4E0

0x00010490  ̶  0x00010000 = 490

0x00010500  ̶  0x00010000 = 500

0x00010584  ̶  0x00010000 = 584

Pointer – Base Address = Offset

Pointer – Base Address = Offset

1
2
3
4

1
2
3
4

Index N

Pointer Location
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on-disk vs in-memory 
pointer values 

Base	
  in-­‐memory	
  address	
  (Bm)	
  computation:	
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Paging Considerations 

�  Not all pages of  an executable (kernels/
applications/libraries) are present in main memory 
�  About 75% of  MS Windows kernels are pageable 

�  Application executables are completely pageable 

�  majority-wins approach is used, which in practice 
eliminates much of  the paging-related noise 

�  Use all pages of  executable that are read-only and 
not discardable 
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Correct page alignment 

�  Alignment between in-file and in-memory pages for 
the executable 

�  Enough information is present in the headers of  an 
executable for correct alignment 
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Test dataset 

�  Everything hinges on the signatures from relocation 
tables being unique 

�  Test sets 
1.  Kernels 
2.  System executables (system32) 

3.  Applications 
4.  Malware 
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Analysis of  the Data 

�  Prevalence: how many relocations per page can we 
expect to find? 

�  Coverage: what fraction of  the pages in the executable 
contain relocations? 

�  Collision: What are the collision rates of  signatures 
across different executables 

�  Accuracy:  
�  Page Level: What are the false positive (FP) and false 

negative (FN) rates for page signatures? 
�  File Level: Can we just use relocatable code to identify 

code version? 
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prevalence & coverage: 
kernels 
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prevalence & coverage: 
system 
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prevalence & coverage: 
applications 



prevalence & coverage: 
malware 
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(page) signature overlap:  
kernels 
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�  20 kernel files  
�  11,472 signatures and  
�  641,636 Offset-Relocation (O-R) pairs 

�  All signatures are unique 
�  No two pages completely overlap 



(page) signature overlap:  
system 
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�  17,000 system files  
�  667,299 signatures  
�  67,031,628 O-R pairs  
�  Similar results from Kernels 

�  Decreasing overlap from older to newer versions 
�  No definite answer 
�  One possibility is that newer compiler optimization leads to less 

stable O-R configurations in response to minor code changes 



(page) signature overlap: 
applications 
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�  8 popular applications – 26 total versions 
�  5 out of  8 contain only non-overlapping signatures 
�  Adobe Reader, cmd, Firefox, Media Player, and WinRAR 
�  Five Firefox versions cover a release period of  only eight 

months (Aug 2013 – April 2014) 

�  The overlap of  the remaining three applications 
stays almost completely in lowest quantile 



(page) signature overlap:  
malware 
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�  9 malware types 
�  34,014 malware samples 
�  976,754 page signatures 
�  124,239,916 pairs  
�  Almost all signatures are distinct 

�  Exceptions: Backdoor, and Trojan 



(page) signature overlap:  
malware 

�  Backdoor set contains 964 closely related version 
of  Backdoor.Win32.Hupigon 
�  sdhash similarity score is 95 out of  100 

�  Trojan set contains 718 near-identical versions of  
Trojan-Downloader.Win32.Banload 
�  Contributing 4.4% of  the samples in collision 
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Page- and File-level accuracy 

�  Coverage, Provenance, and Overlap are measured on the 
signatures created from executable files 

�  Accuracy is measured on memory dumps 

�  Measuring ground truth 
�  LibVMI – an alternate way to find pages in memory dump 
�  Unlike codeid, libVMI finds and interprets the data 

structures such as LDR_DATA_TABLE_ENTRY, 
PEB_LDR_DATA, EPROCESS, and PEB. 

�  It identifies the virtual base address and size of  kernel and 
other executables including DLLs, EXEs, and SYS. 

�  Pages identified by LibVMI are the target for codeid 
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Page- and File-level accuracy 

�  In some cases, page contains only 0x00 or 0xFF. 
�  It satisfies the equation for signature matching 

�  Trivially filter out with precisely zero entropy 
�  Filtering improves false positives 

�  Pages with very low (but not zero) entropy triggers 
false positives 

�  Overall codeid has zero false negative rate, and 
false positive rate of  around 0.0021 
�  Page-level accuracy is 99.79% 
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page-level accuracy:  
kernel & modules 

29 

TP: Identify correct page, belong to correct process 
FP: Wrong page or page belongs to wrong process 
TN: No match and memory image does not contain target binary 
FN: No match and memory image contains target binary 



page-level accuracy:  
processes and .dlls 
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TP: Identify correct page, belong to correct process 
FP: Wrong page or page belongs to wrong process 
TN: No match and memory image does not contain target binary 
FN: No match and memory image contains target binary 



File-level accuracy:   
kernel modules 
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�  182 different modules (by names)  
�  across 10 MS Windows versions 

�  Blank cells indicate zero in confusion matrix 

�  GT represents ground-truth  
�  Total number of  binaries present in memory image 



File-level accuracy:   
kernel modules 

�  Paging affects the accuracy 
�  2.2% (or 737 out of  33,539) of  pages are not loaded 

in 10 images 

�  Vista-SP1 image alone had 434 pages (out of  3,342) 
missing 
�  13% of  pages are missing 

�  It is probably the result of  the snapshot taken too soon 
after boot 

�  VMware drivers are found in all cases 
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File-level accuracy:   
Firefox 23 − 29 
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�  Applications tend to have no page signature collisions 

�  Challenging case: 7 consecutive versions of  Firefox, 
individual release comes every 6 weeks 
�  Coverage of  around 3.5% 
�  All pages are correctly identified 
�  Only two neighboring versions are tied 



Signature Comparison— 
Baseline algorithm 

34 



Basis of  content-filtered 
algorithm 

35 

00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0 24  CC F8 e8 39 00 00 00 83   ..U..h.$...9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 24 CC F8 68   ..U...E..@4.$..h
00000040|  00 25 CC F8 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   .%..........3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 25 CC F8 cc cc   .........%.%....
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

00000000|  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000010|  8b ff 55 8b ec 68 E0  04   01 00 e8 39 00 00 00 83   ..U..h.....9....
00000020|  c4 04 5d c2 04 00 cc cc  cc cc cc cc cc cc cc cc   ..].............
00000030|  8b ff 55 8b ec 8b 45 08  c7 40 34 90 04  01 00 68   ..U...E..@4....h
00000040|  00 05  01 00 e8 0f 00 00  00 83 c4 04 33 c0 5d c2   ............3.].
00000050|  08 00 cc cc cc cc cc cc  ff 25 84 05 01 00 cc cc   .........%......
00000060|  44 72 69 76 65 72 20 75  6e 6c 6f 61 64 69 6e 67   Driver unloading
00000070|  0a 00 cc cc cc cc cc cc  cc cc cc cc cc cc cc cc   ................
00000080|  48 65 6c 6c 6f 2c 20 57  6f 72 6c 64 0a 00         Hello, World..

Code in Memory

Code in File

0x16
0x3B
0x40
0x5A

Relocation
Table

0x16
0x3B
0x40
0x5A

Relocation 
Table

Pre-determined Base Address: 0x00010000

In-Memory Base Address: 0xF8CC2000

0xF8CC24E0  ̶  0xF8CC2000 = 4E0

0xF8CC2490  ̶  0xF8CC2000 = 490
0xF8CC2500  ̶  0xF8CC2000 = 500

0xF8CC2584  ̶  0xF8CC2000 = 584

0x000104E0  ̶  0x00010000 = 4E0

0x00010490  ̶  0x00010000 = 490

0x00010500  ̶  0x00010000 = 500

0x00010584  ̶  0x00010000 = 584

Pointer – Base Address = Offset

Pointer – Base Address = Offset

1
2
3
4

1
2
3
4

Index N

Pointer Location

Last 12 bits of  a pointer are consistent across file and memory 



Signature Comparison— 
Content-filtered algorithm 
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Throughput 
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�  PoC implementation ran on 2.6GHz Intel Core i7 CPU using a 2GB target 
�  33,554,432 memory pages to scan 

�  Cross-over point of  algorithms is around 1000 signatures 

�  Further improvement: filtering out of  memory pages based on content or 
location, sampling of  signatures, and concurrent processing 



Comparison with prior work 
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�  OS-Sommelier— best representation of  prior state of  the art 
�  Better accuracy than the approaches based on CPU registers and IDT 

content 

�  It is inherently fragile and has high sensitivity to the hypervisor 
�  Dependence on specific byte patterns to identify data structures 



Conclusion 
�  Fully automated signature generation 

�  Page-level accuracy of  99.79% 

�  Zero false negative rate  

�  ensures that, if  the target code is in memory, it will be found 

�  Perfect kernel detection (windows) 

�  Kernel module mapping: 97/93/100/100% for xp/vista/7 & 
8 

�  Firefox detection – success in the worst case 

�  Scalable performance 

�  Main limiting factor in codeid is the unpredictability of  paging 
system 

�  not a notable impediment under normal workload 
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